Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidized metal electron acceptors.

نویسندگان

  • Silke Nissen
  • Xiaoxin Liu
  • Karuna Chourey
  • Robert L Hettich
  • Darlene D Wagner
  • Susan M Pfiffner
  • Frank E Löffler
چکیده

The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidized metals in S. oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype and to an organism for which a genetic system is available. To investigate and compare c-type cytochrome expression in S. oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C more comprehensively, proteomic measurements were used to characterize lysates of cells grown with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25, c-type cytochromes when grown with Fe(III) and Mn(IV) respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterization proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help to elucidate the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C.

Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed...

متن کامل

Characterization of Fe(III) reduction by chlororespiring Anaeromyxobacter dehalogenans.

Anaeromyxobacter dehalogenans strain 2CP-C has been shown to grow by coupling the oxidation of acetate to the reduction of ortho-substituted halophenols, oxygen, nitrate, nitrite, or fumarate. In this study, strain 2CP-C was also found to grow by coupling Fe(III) reduction to the oxidation of acetate, making it one of the few isolates capable of growth by both metal reduction and chlororespirat...

متن کامل

The Mosaic Genome of Anaeromyxobacter dehalogenans Strain 2CP-C Suggests an Aerobic Common Ancestor to the Delta-Proteobacteria

Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation, and surface motility. Analysis of the...

متن کامل

Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1

Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components f...

متن کامل

Biomolecular Mechanisms Controlling Metal and Radionuclide Transformations in Anaeromyxobacter dehalogenans

Research Objectives: Microbiological reduction and immobilization of U(VI) and Tc(VII) has been proposed as a strategy for remediating radionuclide-contaminated environments. Numerous studies focusing on the reduction kinetics and speciation of these metals have been carried out using contaminated sediment samples, microbial consortia, and pure bacterial cultures. While previous work with model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 40 6  شماره 

صفحات  -

تاریخ انتشار 2012